4 research outputs found

    Characterization of α- and β‑RDX Polymorphs in Crystalline Deposits on Stainless Steel Substrates

    No full text
    The highly energetic material (HEM) hexahydro-1,3,5-trinitro-<i>s</i>-triazine, also known as RDX, has two stable conformational polymorphs at room temperature: α-RDX (molecular conformation of −NO<sub>2</sub> groups: axial–axial–equatorial) and β-RDX (molecular conformation of −NO<sub>2</sub> groups: axial–axial–axial). Both polymorphs can be formed by deposition on stainless steel substrates using spin coating methodology. α-RDX is the most stable crystal form at room temperature and ambient pressure. However, β-RDX, which has been reported to be difficult to obtain in bulk form at room temperature, was readily formed. Reflection–absorption infrared spectroscopy measurements for RDX-coated stainless steel substrates provided spectral markers that were used to distinguish between the conformational polymorphs on large surface areas of the substrates. Raman microspectroscopy was employed to examine small areas where the intensity was proportional to the height of the structures of RDX. Spectral features were interpreted and classified by using principal component analysis (PCA). The results from these spectral analyses provided good correlation with the values reported in the literature. Conditions to generate predominantly β-RDX crystalline films as a function of the spin coating rotational speed on these substrates were obtained. PCA was also applied to predict percentages of polymorphs present in experimental samples. Applications of the results obtained suggest the modification of existing vibrational spectroscopy based spectral libraries for defense and security applications. Understanding the effects of polymorphism in HEMs will result in the attainment of higher confidence limits in the detection and identification of explosives, especially at trace or near trace levels

    Mechanism for the Uncatalyzed Cyclic Acetone-Peroxide Formation Reaction: An Experimental and Computational Study

    No full text
    In this study, a mechanism for the uncatalyzed reaction between acetone and hydrogen peroxide is postulated. The reaction leads to the formation of the important homemade explosives collectively known as cyclic acetone peroxides (CAP). The proposed mechanistic scheme is based on Raman, GC-MS, and nuclear magnetic resonance measurements, and it is supported by <i>ab initio</i> density functional theory (DFT) calculations. The results demonstrate that the proposed mechanism for the uncatalyzed formation reaction of CAP occurs in three steps: monomer formation, polymerization of the 2-hydroperoxipropan-2-ol monomer, and cyclization. The temporal decay of the intensities of important assigned-bands is in excellent agreement with the proposed mechanism. Previous reports also confirm that the polymerization step is favored in comparison to other possible pathways
    corecore